ENEA

Introduction to X-ray based methods

X-ray scattering techniques - powerful tools for the microstructural characterization of (nano)materials

Leander Tapfer
ENEA, Brindisi Research Centre
Nanoinnovation
Rome, September 20, 2016

Characterization: role and importance

microstructural features and characterization techniques

The scale of «microstructural features», the magnification required to reveal the feature, and some common techniques available for studying the microstructure

Scale	Macrostructure	Mesostructure	Microstructure	Nanostructure
Typical magnification	x1	x 100-1000	x 10000	x 1000000
Common experimental techniques	Visual inspection	light optical microscopy	Scanning and transmission EM	X-ray diffraction
	X-Ray radiography	Scanning electron microscopy	Atomic force microscopy	Scanning tunneling microscopy
	Ultrasonic inspection	X-ray topography	X-ray tomography	High-resolution transmission EM
Characteristic microstructural features	Production defects	Grain and particle sizes	Dislocation substructure	Crystal and interface structure
	Porosity, cracks and inclusions	Phase morphology and anisotropy	Grain and phase boundaries	Point defects and point-defects clusters
			Precipitation phenomena	

X-ray interactions with matter

$\boldsymbol{h} \boldsymbol{v}$: photon
\mathbf{e} : electron

X-ray scattering/diffraction methods (some....)
X-ray powder diffraction
Pair distribution function analysis (total X-ray scattering)
Glancing incidence diffraction
Texture analysis
Residual stress measurements
X-ray reflectivity
Diffuse scattering
Anomalous X-ray scattering
SAXS/WAXS
Grazing incidence small angle scattering/diffraction (non coplanar)
High-resolution X-ray diffraction
Reciprocal space mapping
X-ray fluorescence
Standing wave analysis
X-ray interferometry
X-ray topography
X-ray tomography

Outline for the present lecture

- Introduction
- Basic concepts (fundamentals)
- X-ray powder diffraction
- Glancing incidence diffraction
- X-ray reflectivity
- SAXS/WAXS
- High-resolution X-ray diffraction
- Reciprocal space mapping

Basic concepts

Basic concepts - introduction

Longitudinal (temporal) Coherence Length

$L_{T}=\frac{\lambda^{2}}{2 \Delta \lambda} \quad \cdots \begin{aligned} & \text { from the Heisenberg's } \\ & \text { principle }\end{aligned}$

Transverse (spatial)
Coherence Length

$$
L_{S}=\lambda \frac{R}{2 r_{S}} \approx \frac{\lambda}{2 \phi_{S}} \approx \frac{\lambda}{\Delta \alpha_{i}}
$$

Typical Values (for CuKa_{1}):
$\mathrm{I}=1.54056$ Å,
DI $=3.615 \times 10^{-4} \AA$
$\mathrm{L}_{\mathrm{T}}>1 \mathrm{~mm}$

$$
L_{S}=\lambda \frac{R}{2 r_{S}} \approx \frac{\lambda}{2 \phi_{S}} \approx \frac{\lambda}{\Delta \alpha_{i}}
$$

conventional X-ray tube

focus size $0.1 \times 10 \mathrm{~mm}^{2}$

$$
\begin{array}{ll}
\frac{\text { conventional X-ray tube }}{\text { focus size } 0.1 \times 10 \mathrm{~mm}^{2}} & \text { synchrotron radiation } \\
\lambda=1.5418 \AA & \lambda=1.5418 \AA \\
R=30 \mathrm{~cm} & R=40 \mathrm{~m} \\
r_{S}=0.1 \mathrm{~mm} & r_{S}=40 \mu \mathrm{~m} \\
L_{s} \approx 15 \mu \mathrm{~m} & \mathrm{~L}_{\mathrm{s}} \approx 80 \mu \mathrm{~m} \text { (up to } 1 \mathrm{~mm} \text {) }
\end{array}
$$

Lateral Coherence Length at Glancing Incidence
definition of the parameters used to estimate the coherence lengths

conventional X-ray tube
$L_{s} \geq 10 \mu \mathrm{~m}$
synchrotron radiation $L_{s} \geq 1 \mathrm{~mm}$

Fundamentals of diffraction - reciprocal lattice
 "Real" space
Set of planes

Fundamentals of diffraction - reciprocal lattice

Fundamentals of diffraction - reciprocal lattice

Fundamentals of diffraction - Bragg's law - Ewald's sphere

Three-dimensional lattice (real space - reciprocal space)

some reciprocal lattice points are contained entirely within the Ewald Ewald sphere sphere and some are entirely outside. These will not be observed

Fundamentals of diffraction - reciprocal lattice

The diffraction pattern of a crystal can be used to determine the reciprocal vectors of the lattice, and by using this process, the atomic arrangement of a crystal can be determined

Diffraction on single and polycrystalline materials
Single crystal

Poly crystal (random) Point detector scan

Poly crystal (texture)

Powder diffraction

Powder diffraction

Experimental configuration powder diffraction (Bragg-Brentano)

Powder Diffraction

Powder diffraction for the characterization and analysis of: microcrystalline and nanocrystalline materials

- Crystalline? Amorphous?
- What elements, compounds, phases are present?
- Structure? Lattice constants?
- Strain?
- Grain sizes? Grain orientations? Is there a mixture? What fraction (\%)?
- Powders, bulk materials, thin films, nanoparticles, soft materials.

Which Information does a Powder Pattern offer?

- peak position
- peak intensity
- peak broadening
- scaling factor amount
- diffuse background
- modulated background
$\Rightarrow \quad$ dimension of the elementary cell
$\Rightarrow \quad$ content of the elementary cell
\Rightarrow strain/crystallite size
$\Rightarrow \quad$ quantitative phase
$\Rightarrow \quad$ false order
$\Rightarrow \quad$ close order

Powder Pattern and Structure

Powder pattern analysis

- The d-spacings of lattice planes depend on the size of the elementary cell and determine the position of the peaks.
- The intensity of each peak is caused by the crystallographic structure, the position of the atoms within the elementary cell and their thermal vibration.
- The line width and shape of the peaks may be derived from conditions of measuring and properties - like particle size - of the sample material.

Powder Pattern - Phase analysis - Powder Diffraction File (PDF)

Quantitative phase analysis through powder diffraction file (PDF) of the ICDD (International Centre for Diffraction data)

Quantitative analysis powder patterns

Principles of the Rietveld method

- the Rietveld method (Hugo M. Rietveld, 1967/1969) allows the optimization of a certain amount of model parameters (structure \& instrument), to get a best fit between a measured and a calculated powder diagram.
- the parameter will be varied with a non-linear least-squares algorithm, that the difference will be minimized between the measured and the calculated pattern:

$$
S=\sum_{i} w_{i}\left[y_{i}(o b s)-y_{i}(c a l c)\right]^{2} \quad \rightarrow \quad \min
$$

Basis formula of the Rietveld method

Parameters in Rietveld method
$y_{i}($ calc $)=\sum_{k} S F \cdot M_{k} \cdot P_{k} F_{k}^{2} \cdot L P\left(2 \Theta_{k}\right) \cdot \Phi_{k}\left(2 \Theta_{i}-2 \Theta_{k}\right)+y b_{i}(o b s)$

- SF : Scaling factor
- M_{k} : Multiplicity of the reflections \boldsymbol{k}
- P_{k} : Value of a preferred orientation function for the reflections \boldsymbol{k}
- $F_{k}{ }^{2}$: Structure factor of the reflections k
- LP: Value of the Lorentz-Polarizations function for the reflections \boldsymbol{k}
- Φ_{k} : Peak profile function for the reflections k on the position \boldsymbol{i}
- $y b_{i}$: Value of the background at the position \boldsymbol{i}
- k : Index over all reflexes with intensity on the position \boldsymbol{i}

Profile-Functions

- Gaussian

$$
G=\frac{\sqrt{C_{0}}}{\Gamma_{k} \sqrt{\pi}} \exp \left[-\frac{C_{0}}{\Gamma_{k}^{2}}\left(2 \theta_{i}-2 \theta_{k}\right)^{2}\right] ; \quad C_{0}=4 \ln 2
$$

- Lorentzian (Cauchy)
- Pearson VII

$$
L=\frac{2 \sqrt{C_{0}}}{\pi \Gamma_{k}} \frac{1}{1+\frac{C_{0}}{\Gamma_{k}^{2}}\left(2 \theta_{i}-2 \theta_{k}\right)^{2}} ; \quad C_{0}=4
$$

$$
P_{V I I}=\frac{C_{0}}{\Gamma_{k}}\left[1+\frac{4(\sqrt[m]{2}-1)}{\Gamma_{k}^{2}}\left(2 \theta_{i}-2 \theta_{k}\right)^{2}\right]^{-m} ; \quad C_{0}=\frac{2 \sqrt{m}(\sqrt[m]{2}-1)^{\frac{1}{2}}}{\sqrt{\pi(m-0.5)}}
$$

- Pseudo-Voigt

$$
p V=\eta L+(1-\eta) G
$$

- Definition of the linewidth

$$
\Gamma_{k}^{2}=U \tan ^{2} \theta_{k}+V \tan \theta_{k}+W
$$

Background

- subtraction of the background, if the background (without sample) can be measured
- interpolation of the background intensity (with some problems if there are many lines in the diffraction pattern: in the case of more phases, low symmetry or large unit cell)
- Polynom Function (6 Parameters)
- a special function for amorphous components

$$
y_{i b}=B_{0}+B_{1} Q+\sum_{m=1}^{n} B_{2 m} \frac{\sin \left(B_{2 m+1} Q\right)}{B_{2 m+1} Q}
$$

Hints and Tricks - how to get good experimental data

- With a good adjusted diffractometer
- Bad adjustment causes a line-displacement and -broadening
- Line-displacement can be corrected (correlated with the lattice parameters), the line-broadening not
- With substances of fine grains
- Coarse grains are the source for „random" Integral-Intensities
- Coarse grains cause problems with the surface absorption
- Sufficient measurement time
- The absolute error in the Intensity-measurement is proportional to $\sqrt{ }(N)$ (Poisson-distribution)
- The relative error is proportional to $1 / \sqrt{ }(N)$

Structure Refinement (Rietveld Method)

- The parameters, that define the crystal structure cannot be refined (lattice parameter, fractional coordinates, anisotropic temperature vibrations)
- Only the necessary parameter should be refined (the convergence is better for few parameters)
- The quality of powder data are rarely so good that the anisotropic temperature factors can be calculated
- The measured data should be registered in a possibly wide angular range (structural and instrumental parameters depend differently on the diffraction angle)

Microabsorption

- flat sample in reflection mode - microabsorption

Porous sample, the density is independent of the distance from the surface

the porosity is described by a smaller linear attenuation coefficient

$$
\begin{aligned}
& \mu \rightarrow \mu^{\prime} \\
& \mu^{\prime} \leq \mu
\end{aligned}
$$

however, the absorption-term does not depend on the diffraction angle
problems in the quantitative phase analysis

Surface porosity and/or density gradient

- flat sample in reflection mode - surface absorption
gradient of the density
volume ratio, α

Porous sample, mainly on the surface

Crystallite size analysis
Scherrer's equation - gran size analysis

Scherrer's equation

$$
D=\frac{k \cdot \lambda}{\Delta \omega \cdot \cos \theta}
$$

k shape factor (= 0.8-1.2)
$\Delta \omega$ X-ray wavelength FWHM (in radians)

Strain effects in diffraction lines

Line Broadening

parameters of the diffraction lines:
Position (20), Maximum Intensity ($I_{\max }$), Full-Width-at-Half-maximum (FWHM), Integral Intensity $\left(\mathrm{l}_{\text {int }}\right)$, Integral Breadth (β)
size effect
strain effect

Cauchy

$$
y=\frac{I_{0}}{\frac{\left(x-x_{0}\right)^{2}}{w}+1}
$$

X-ray diffraction of nanowires (nanorods) on surfaces
Nanorods and cluster

ZnO wires on Si substrate (Au islands on top of the ZnO wires)
highly ordered - the growth axis of ZnO -wires are \perp to the surface

almost ordered - there is preferred growth axis direction of the ZnO wires ("highly-textured")

Peak profile analysis and size determination

X-ray diffraction (powder diffraction) analysis of nanocrystals

X-ray diffraction (powder diffraction) analysis by Debye formula

If the nanocrystals are very small (size < 5nm) the Debye formula should be used for the diffraction pattern analysis and the size and "internal" strain determination
particle (small crystal of any shape) made by \mathbf{N} atoms,
$x_{i j}$ is the distance between atoms i and j,
\boldsymbol{f}_{i} and $\boldsymbol{f}_{\boldsymbol{j}}$ are the atomic scattering factors of atom \boldsymbol{i} and \boldsymbol{j}, respectively.

Debye formula for the intensity:

$$
I_{N}(s)=\sum_{i=1}^{N} \sum_{j=1}^{N} f_{i} \cdot f_{j} \cdot \frac{\sin \left(2 \cdot \pi \cdot s \cdot x_{i j}\right)}{2 \cdot \pi \cdot s \cdot x_{i j}}
$$

small crystal of wurtzite structure

Debye formula: calculation method

Zincblende ABCABCABC...

Wurtzite
ABABABAB

Example: structure of gold clusters (nanocrystals)
Structure of Gold Nanoparticles

CUBOCTAHEDRAL

ICOSAHEDRAL

DECAHEDRAL

Metal nanoparticles may crystallize in a crystallographic and also in a non-crystallographic structure with very small cluster size.

Noble metals with f.c.c. structure are known to form particles having non-crystallographic symmetry (decahedral and icosahedral), resulting from a very complex twinning.

Appearance of nanoclusters

 of different structure types.Structure Analysis by a full-pattern X-ray powder diffraction analysis (Rietveld-like approach)

Experimental data and simulation results

1-phase synthesized dodecanethiol-AuNPs

Glancing incidence diffraction - thin film analysis

Thin film analysis

Parallel beam configuration

negligible sample displacement issues
(rough and curved

Glancing incidence X-ray diffraction analysis (GID, GIXD)

Glancing incidence configuration

conventional Bragg-Brentano configuration
$20-\omega$ scans probe only grains with (hkl) planes aligned parallel to the surface

parallel-beam glancing incidence configuration
2θ - scans probe grains with (hkl) planes oriented in all directions

X-ray penetration depth vs. angle of incidence

X-ray penetration depth depends on:

- materials parameter (atomic Z number, mass density ρ)

- X-ray wavelength (λ)
- incidence angle (θ)

for small incidence angles $\theta<10^{\circ}$: $n m-\mu m$
at high incidence angles $\theta>10^{\circ}$: $\mu \mathrm{m}$ - mm

Silicon
Cuk α-radiation ($\lambda=0.154 \mathrm{~nm}$)

Parallel beam configuration - applications

rough or irregular surface

near surface
${ }_{2} \leftarrow$ region
film/substrate systems, multilayers, superlattices
glancing / grazing incidence angle applications; phase and/or stress gradient (depth profiling)

Differences and peculiarities: ω - 2θ scan vs glancing incidence 2θ scan
glancing incidence 2θ scan

	$\omega-2 \theta$ scan	glancing incidence 2θ scan
grain orientations	directions \perp to surface	various directions
depth resolution	constant, up to mm	- from few nm up to mm ; depth profiling possible by varying incidence angle - sensitive to surface - ideal for ultrathin layers
best configuration	Bragg-Brentano parallel beam	parallel beam (less sensitive to sample displacement)

glancing incidence diffraction (GID, GIXD)

Example:

GID 2θ scans of Thin oxide films deposited on substrate $\left(\mathrm{Si}, \mathrm{SiO}_{2}\right)$

GID scan of $\mathrm{Gd}_{2} \mathrm{O}_{3}$ sol-gel thin films annealed at $500^{\circ} \mathrm{C}$ for 16 h on different substrates

glancing incidence diffraction (GID, GIXD)

glancing incidence diffraction - crystallite size

Peak (most intense) profile analysis and application of Scherrer's relation for crystallite size determination

Nanoparticles on surface - application of parallel beam GID measurements

Deposition of ultrathin gold films ($\mathbf{2} \mathbf{n m}$) on $\mathrm{Si}\left(\mathrm{or}_{\mathrm{SiO}_{2}}\right)$ and formation of Au nanoparticles by thermal annealing in inert atmosphere

glancing-incidence X-ray diffraction (GID) in parallel beam configuration
measurement scheme

GID patterns for different annealing temperatures polycrystalline structure (Au Bragg peaks)

GID for different azimuthal angles for texture analysis

- how are the Au islands placed on Si (crystallographic)?
- how is the Au lattice accommodated with respect to the Si lattice?

Modelling of the lattice accommodation of the Au and Si lattices

From GID and TEM analysis:

modelling of the Au island on/in Si lattice
\qquad

High-resolution X-ray diffraction (HRXRD)

 andReciprocal space mapping (RSM)
diffractometer configuration for:

- high resolution X-ray diffraction (HRXRD)
- reciprocal space mapping (RSM)

High resolution rocking curves

- lattice distortions within 10^{-5}
- lattice parameter measurements
- layer thickness (high precision)
- superlattice periods
- lattice strain relaxation
- alloy composition
- interface smearing / roughness
(some data analysis requires dynamical simulation).

Reciprocal space mapping

- 2D analysis (in-plane and out of plane)
- lattice strain relaxation
- diffuse scattering analysis for lattice defect analysis (clusters, stacking faults, dislocations)
- mosaicity
- lattice coherence

lattice strain and strain relief (relaxation)

growth of highly lattice-mismatched materials

High-resolution X-ray diffraction measurements
Measurement of thin layers (multilayers) and of (even small!!) lattice mismatch

almost the same lattice constant $a($ GaSb $)=6.096 \AA$ $\mathrm{a}(\mathrm{ZnTe})=6.101 \AA$
small lattice mismatch
~ 0.0008

High-resolution reciprocal space map (RSM)

2D intensity maps around reciprocal lattice points
ideal interface between heterostrucure and substrate
the same interface lattice parameter
imperfect interface between heterostrucure and substrate
defect (dislocations, clusters) formation at interface due to different lattice parameters and strain relief (\rightarrow mosaicity)
of ideal and mosaic structure

Recording of reciprocal space maps (RSM)

Qualitative analysis of RSM and parameter contributions

peak shape in reciprocal space maps for epitaxial films of mosaic structure (columnar structure)

peak shape in reciprocal space maps for epitaxial films of mosaic structure (mosaic block structure:platelets/discs)

contribution of correlation lengths
contribution of angular tilt
sum of all contributions

Interpretation and qualitative analysis of RSM

- strain state (lattice relaxation)
- lateral extension (lateral correlation length)
- vertical extension (vertical correlation length)
- lattice tilt angle

Example: RSM of nanowires (NWs) grown on semiconductor surfaces

RSM of nanowires grown on semiconductor surfaces

RSMs recorded close to the (400) rip

X-ray reflectivity

X-ray specular reflectivity (XSR)

Optical Theory of the X-Ray Reflectivity

Refraction index for X-ray radiation $\quad n=1-\frac{r_{0} \lambda^{2}}{2 \pi} N_{a t}\left(f_{1}+i f_{2}\right)<1$
Classical electron radius

$$
r_{0}=e^{2 / 4 p e_{0}} m_{e} c^{2}
$$

Refraction index of the vacuum

$$
n=1
$$

Snell's law

$$
n_{A} \cos \theta_{r}^{A}=n_{B} \cos \theta_{r}^{B}
$$

Snell's law (vacuum/material)

$$
\cos \theta=n_{M} \cos \theta_{M}
$$

Critical angle

$$
\cos \theta_{c}=n_{M}
$$

$$
1-\frac{\theta_{c}^{2}}{2} \approx n_{M}=1-\frac{r_{0} \lambda^{2}}{2 \pi} N_{a t}\left(f_{1}+i f_{2}\right) \Rightarrow \theta_{c}^{2} \approx \frac{r_{0} \lambda^{2}}{\pi} N_{a t}\left(f_{1}+i f_{2}\right)
$$

Experimental Configuration for X-ray reflectivity measurements

Refraction Index for X-ray Radiation

$$
\begin{aligned}
& n=\frac{\cos \theta}{\cos \theta^{\prime}}=\frac{\lambda}{\lambda^{\prime}} \\
& n \cos \theta^{\prime}=\cos \theta \\
& n<1 \Rightarrow \cos \theta_{c}=n \text { bei } \theta^{\prime}=0 \\
& n=\cos \theta_{c} \approx 1-\frac{\theta_{c}^{2}}{2} \\
& \theta_{c}^{2} \approx 2(1-n)=2(\delta-i \beta) \\
& n=1-\frac{r_{e} \lambda^{2}}{2 \pi} N_{e}\left(f_{0}+f^{\prime}-i f^{\prime \prime}\right) \\
& \underline{\text { vacuum: } \mathrm{n}=1} \\
& n \approx 1-\delta-i \cdot \beta<1
\end{aligned}
$$

Gold (Au):
$\delta=4.6409 \times 10^{-5}$
$\beta=-4.5823 \times 10^{-6}$
$\mathrm{n}=0.99995-4.58 \times 10^{-6} i$

X-ray penetration depth at small incidence angle (optical reflection)
the critical angle θ_{c} depends (at the same X-ray wavelength) on the following materials parameters:

- mass density
- atomic mass
- electric susceptibility

> silicon
> $\Theta_{c}=0.223^{\circ}$

$$
\begin{aligned}
& \text { polycarbonate (PC) } \\
& \Theta_{c}=0.165^{\circ}
\end{aligned}
$$

silicon dioxide $\left(\mathrm{SiO}_{2}\right)$
$\Theta_{c}=0.235^{\circ}$

> polystyrene (PS)
> $\Theta_{c}=0.147^{\circ}$
stainless steel (L316)
$\Theta_{c}=0.385^{\circ}$

X-ray reflcetivity and penetration depth (thin polymer films on substrates)

Polystyrene polymer layer on Si

film thickness d is related to the distance between interference fringes (Kiessig fringes)

Roughness: surface and multiple interfaces

$$
\begin{array}{cc}
\text { Interference: } & \text { Damping: } \\
\mathrm{d}=2 \pi / \Delta \mathrm{q}_{\mathrm{z}}=\lambda /\left(2 \Delta \alpha_{i}\right) & \text { roughness } \sigma_{1}, \sigma_{2} \\
& \text { surface , interfaces }
\end{array}
$$

Scans in Reciprocal Space $\left(\mathrm{q}_{\mathrm{x}}, \mathrm{q}_{\mathrm{z}}\right)$ - RSM close to the (000) rlp

The region below the solid line is inaccessible for in-plane scattering (beam or detector below the sample).

Dashed line:
Dashed-dotted line: Inclined dashed-dotted line: Dotted line:
transverse scan (rocking scan). specular reflectivity. longitudinal diffuse scan (reflectivity with offset $\delta \alpha_{i}$). detector scan

Langmuir-Blodgett multilayer analyzed by X-ray reflectivity
chemical structure: long chain ammonium salt of 12-phosphomolybdate $\left(\mathrm{PMo}_{12} \mathrm{O}_{40}{ }^{3-}\right)$
the LB unit cell is divided into 3 parts:
λ upper and lower aliphatic chains of different thickness
Σ
a lamella containing 2 clusters
of $\mathrm{PMo}_{12} \mathrm{O}_{40}{ }^{3-}$

$\mathrm{PMo}_{12} \mathrm{O}_{40}{ }^{3-}$ LB multilayers (21 monolayers)

SAXS and WAXS

SAXS and WAXS

Small angle x-ray scattering (SAXS) - experimental configuration
sample

Intensity rings (Debye rings) of different intensity and broadening, depending on the structure of the sample are observed on a image plate / CCD camera.
\Rightarrow for amorphous materials, such as for polymers, the Debye rings are rather large;
\Rightarrow for crystalline materials the rings become narrower and intense.

Materials:
-Nanoparticles
-Membranes
-Lipids
-Proteins
- Food and nutrients
-Pharmaceuticals
- Solutions
- Nanocomposites
- Polymers
-Thin films
-Bio materials
-...
\section*{Analysis:}
Crystalline structure
Degree of crystallinity and orientation Particle shape and structure
Particle size and distribution
Particle molecular weight
Surface roughness and correlation

Length scale of SAXS and WAXS

For elastic scattering: $\quad\left|\vec{k}_{i}\right|=\left|\vec{k}_{f}\right|=k=\frac{2 \pi}{\lambda},|\vec{Q}|=2 k \sin \theta$

$$
\vec{Q}=\vec{k}_{f}-\vec{k}_{i}
$$

For small angles: $\quad d=\frac{2 \pi}{Q}=\frac{2 \pi}{\frac{4 \pi}{\lambda} \sin \theta}=\frac{\lambda}{2 \sin \theta} \approx \frac{\lambda}{2 \theta}$
Scattering experiments probe length scales $\lambda / 2 \theta$.
Example: $\lambda=1 \mathrm{~nm}, \theta=1^{\circ}$ yields $\mathrm{d}=1 \mathrm{~nm} / 2 \times 0.0175=28.6 \mathrm{~nm}$

1) small angle scattering (SAXS)
2) wide angle scattering (WAXS)

Length scale ~0.1-100 nm
information about the structure, 3-dimensional structure, Length scale $\sim \AA$

Peculiarities of the method and the objects (samples) analyzed

Peculiarities for "small-angle":

- Typically
- Samples:
- Models:
- Data:
- Experimental setup:
$>10 \mathrm{~nm}$ (from 0.1 nm to several hundreds of nm)-
nano-scale size features
ignore atoms
no sharp peaks; fitting curves
usually in transmission (2D detector), primary beam blocked

Independent objects

- Objects are in a uniform, featureless matrix (e.g. solvent) which is ignored.
- Assume dilute enough so scattering independently
- Assume randomly oriented in all directions
"Objects" may be:
- Globular proteins or clusters
- Micelles
- Random polymer chains in melt/solution
- Inorganic nanoparticles (colloids)
- nanopores

Typical 2D SAXS pattern

Radial intensity distribution at

Title

Guinier and Porod limits for mono-dispersed spheres

for the Porod limit:
the scattered intensity is proportional to the surface area per unit volume.
slope $=-4$ is valid for a sharp interface
the Porod limit is independent on the geometry of the scattering particles and will not give any structural information.
for isolated particles (no interaction between particles) the scattered intensity depends by the radius of gyration R_{G} and is described by Guinier's law (valid for small scattering vectors, $q R_{G}<1$)
the intensity is independent from the shape of the particles
If the shape of particles is known, their size can be determined from the radius of gyration

Example:
precursor molecules dispersed in polymers \& nanoparticle formation

Precursors dispersed in polymer

Nanoparticles of CdS dispersed in polymer

Example:

precursor molecules dispersed in polymers \& nanoparticle formation

Chemical structure of the precursors

- 00
H
C
S
Cd

H
C
N
S
Cd
methyl imidazole (MI) added $\mathrm{Cd}(\mathrm{SBz})_{2},\left[\mathrm{Cd}(\mathrm{SBz})_{2}\right]_{2} \cdot \mathrm{MI}$

WAXS - Arrangement of the precursors molecules in PMMA

WAXS patterns of PMMA bulk like samples added with $\mathrm{Cd}(\mathrm{SBz})_{2}$ (upper curve) and $\left[\mathrm{Cd}(\mathrm{SBz})_{2}\right]_{2} \cdot \mathrm{MI}$ (lower curve) precursors, respectively, before the annealing processes.

The amorphous PMMA peak is located at $\mathrm{q}=11 \mathrm{~nm}^{-1}$.

The sharper Bragg-like peaks are due to the periodic and regular ordering of the precursor molecules within the PMMA polymer matrix.

For the CBz sample, the q-positions and the indexing of the Bragg peaks allows us to identify the Bravais lattice as a primitive cubic lattice, being the first and most intense Bragg peak, located at $\mathrm{q}=4.56 \mathrm{~nm}^{-1}$, the (100) peak that yields a lattice constant $\Lambda=1.37 \mathrm{~nm}$.

The pattern of the CBz-MI sample shows equidistant Bragg peaks indicating a superlattice order of periodicity $\Delta \mathrm{D}=1.65 \mathrm{~nm}$

Arrangement of the $\left[\mathrm{Cd}(\mathrm{SBz})_{2}\right]_{2} \cdot \mathrm{MI}$ precursor in PMMA

Superlattice (SL) ordering of the $\left[\mathrm{Cd}(\mathrm{SBz})_{2}\right]_{2} \cdot \mathrm{MI}$ precursor in PMMA polymer before the annealing process. Two superlattice configurations are possible having all a SL period length $\Lambda=1.65 \mathrm{~nm}$

Here, a regular order of the $\mathrm{Cd}(\mathrm{SBz})_{2} \cdot \mathrm{MI}$ and $\mathrm{Cd}(\mathrm{SBz})_{2}$ molecules is assumed in accordance with the measured stoichiometric values. This hypothesis allows to consider and to interpret the measured superlattice period length.

Arrangement of the $\left[\mathrm{Cd}(\mathrm{SBz})_{2}\right]_{2}$ precursor in PMMA

Spatial ordering of the $\mathrm{Cd}(\mathrm{SBz})_{2}$ precursor molecules within the PMMA matrix before the annealing process, in accordance with the WAXS results.

The unit cell, i.e. the primitive cubic lattice, of lattice parameter 1.37 nm is highlighted. The molecules are placed on the edges of the cubic lattice

Nucleation and growth process - precursor decomposition and nanocrystal formation

II
diffusion of neighbor molecules and nucleation

III

initial growth process and nanocrystal formation

Conclusion - comparisons and remarks

Comparison of X-ray techniques with other characterization toolsand peculiarities

Comparison with other techniques

	X-ray analysis methods	Other techniques
Sample preparation and vacuum compatibility	* No vacuum compatibility required (except XRF, XSW on vacuum). * "Any" sample size (depends on the goniometer size/weight capability). * Rough surfaces acceptable (parallel beam configuration). * No sample preparation required (preparation recommended for the detection of unknown phases or elements in XRD/XRF).	* Surface analysis and electron microscopy techniques will require vacuum compatibility and in many cases sample preparation. * Optical spectroscopy techniques will do analysis on air.
Composition and impurity determination and quantification	* ~ 0.1 w \% (XRF > ppm); may require standards * XRD: also phase information and \% of crystallinity. * Data averaged over large lateral area.	* XPS: > $0.01-0.1$ at \% (may require depth profiling). * SIMS: > 1 ppm (requires sputtering depth profiling). * EDS: > 0.1 - 1 w \% over small volume $1 \mu \mathrm{~m}^{3}$. * Little with phase information; averages over small lateral areas ($<100 \mu \mathrm{~m}$).
Lattice constants	* Better than within 10-5	* TEM: estimates $\sim 10^{-3} / \sim 10^{-4}$
Thickness in thin films	* HRXRD or XRR: direct measurement (no modeling for single or bi-layers) * requires flat surfaces	* RBS: > 10 nm (requires modeling). * Ellipsometry: requires modeling. * TEM: requires visual contrast between layers.
Grain size	* Measures Crystallite Size. * Typically ~ 1-2 nm - microns, requires size/strain assumptions/ modeling. * "Volume average" size	* SEM: grain size distribution averaged over small area. * TEM/SEM: "number average" size.

Comparison with other techniques

	X-ray analysis methods	Other techniques
Texture	* Type and distribution averaged over large sample volume.	* EBSD: within grain sizes dimensions, better sensitivity at the surface.
Residual Stress	* 10MPA, averaged over large sample volume (large number of grains) * Needs crystallinity. * Measures strain and obtains stress from Hooke's law. * Averages macro and micro stresses over large area of a layer.	* Wafer curvature: No need for crystallinity. Direct measurement of stress, but only interlayer stress between film and substrate (macrostress).
Depth dependent information	* Phase, grain sizes, texture and stress "depth profiling" - requires x-ray information depth modeling	* Surface analysis depth profiling: compositional depth profiles.
Surface or Interface roughness	* XRR: interface roughness 0.01 - 5 nm , including buried interfaces	* SPM: top surface only; rsm~ 0.01-100 nm.
Defects	* Misfit dislocations (HR-XRD). * Point defects (diffuse scattering with model). * Extended defects (powder XRD with model). * Average over larger sample area (> mm).	* TEM: accurate identification of defects and their densities; average over small sample area. Sample preparation may introduce artifacts.

Title

